![]() ![]() |
Комплексная оценка ядерно-радиационного наследия РоссииМ.И.Рылов, ООО "РЭС-центр", Санкт-Петербург
Как следует из табл. 2, применение ЯО в войне приведет к долгосрочным глобальным последствиям, таким как уменьшение озонового слоя, снижение температуры у поверхности земли, вызванное выбросами пыли и дыма в атмосферу и, наконец, к наступлению "ядерной зимы" и "ядерной ночи". Иными словами, все то живое, что не сгорит во время ядерных пожаров, вымерзнет. Основные геофизические и экологические последствия ядерной войны представлены в табл. 3 [37, 38]. Что касается гибели населения непосредственно в результате ядерного удара, то по оценкам специалистов США, сделанным в начале 1960-х гг., предполагалось, что в результате ответного удара в США погибнет от 2 до 15 млн. чел. [4]. В наиболее пессимистичных прогнозах предполагаемое число погибших указывалось в 25 млн. чел. [5]. Несмотря на то, что начиная с 1946 г., мы неоднократно в ООН ставили вопрос о запрещении ЯО как оружия массового уничтожения людей, наша позиция не была воспринята мировым сообществом. Таблица 3. Геофизические и экологические последствия ядерной войны
2. Атомный фронт СССР – суровая необходимость Страна буквально на другой день после окончания самой кровопролитной и разрушительной войны 1941-1945 гг. в истории человечества была вынуждена искать адекватный ответ на новый вызов. Необходимо было создавать собственное ЯО. Причем делать это немедленно, бросив на Атомный проект все силы и средства, не считаясь с той колоссальной ценой, которую придется заплатить за обретение ЯО [6,7]. Успешное испытание ядерной бомбы РДС-1 (что означало: "Россия делает сама" и/или "Реактивный двигатель Сталина") 29 августа 1949 г. на Семипалатинском полигоне стало началом становления ядерной отрасли страны и разрушило монополию США на ЯО, остановило ядерные аппетиты монополиста, стало триумфом нашего народа, способствовало победе разума над безумием, внесло решающий вклад в сохранение мира на планете. В период с 1949 по 1990 г. в Советском Союзе, согласно данным, опубликованным в книге "Ядерные испытания СССР" (под руководством В.Н. Михайлова – Саров, РФЯЦ-ВНИИЭФ, 1997) всего было проведено 715 ядерных испытаний (ЯИ), из них 559 – в военных целях, 32 – для отработки промышленных зарядов при проведении ЯВ в мирных целях и 124 – в мирных целях (на территории России было 80 таких взрывов). Из общего количества ядерных испытаний 456 проведены на Семипалатинском испытательном полигоне (СИП) и 130 – на Северном испытательном полигоне "Новая земля" (СИПНЗ) – табл. 4, а также на площадках ракетного полигона Капустин Яр (10 высотных и космических взрывов мощностью 1,2 – 300 кт), в районе г. Аральска (наземный взрыв мощностью 0,3 кт) и в районе г. Тоцка (воздушный взрыв мощностью 40 кт). Таблица 4. Данные о количестве атмосферных и подводных ЯВ, произведенных на полигонах СССР
Количество ЯИ, проведенных другими странами – "членами ядерного клуба", было значительно меньше. Основной вклад (80%) в радиоактивное загрязнение (РЗ) внесли ЯИ, проводившиеся США и СССР (примерно по 40%), а все остальные ядерные державы (Великобритания, Франция и Китай) – оставшиеся 20%. Кроме государств – членов ядерного клуба, ЯИ проводили Индия и Пакистан. Эти две страны осуществили по несколько подземных ЯИ. "Передовиками" в этом ядерном безумии были СССР и США. К середине 80-х годов они накопили немыслимый стратегический ядерный мегатоннаж – 11,3 млрд.т взрывчатки, более чем по 2 т на каждого жителя планеты. Обе страны обрели потенциалы многократного взаимного гарантированного уничтожения (рис. 1). ![]() Рис. 1. Динамика производства ядерных боеголовок в СССР и США Попытка США и СССР решить острые международные споры в 1962 г. поставили мир на грань ракетно-ядерной войны. Карибский кризис остудил горячие головы. Началась разрядка международной напряженности, готовность решать разногласия и споры между супердержавами не бряцанием ЯО, а путем переговоров с учетом законных интересов друг друга. 3. Радиационное эхо ядерных испытаний Испытания ЯО привели к устойчивому РЗ поверхности земного шара [31,32, 39-42]. При воздушных взрывах ядерных зарядов крупного и сверхкрупного калибров основная масса радиоактивных веществ (РВ) "забрасывалась" в стратосферу, откуда они выпадали на поверхность земли в виде глобальных выпадений. По оценкам специалистов ООН, в северном полушарии масштабы РЗ только 137Cs составили порядка 500 ПБк. По последним данным группы экспертов Метеорологического управления Японии, заново изучавших данные о состоянии атмосферы, морской воды и почвы примерно в 30 странах, действительные масштабы РЗ составили 700 ПБк. При оценке плотности выпадений РВ установлено, что 70% активности радионуклидов приходится на территории Северного полушария планеты, а 30% - на территории Южного полушария. Основные площади локальных следов и загрязненных территорий концентрируются вокруг полигонов США и бывшего СИП в республике Казахстан, на СИПНЗ локальный след от единственного наземного ЯВ сформировался в основном на территории полигона. На рис. 2 показано изменение во времени средних ежегодных величин эффективных доз облучения населения Северного полушария Земли в результате глобальных выпадений 90Sr и 137Cs , а также образования под действием нейтронов взрыва 14С и 3Н. Кроме того, представлено изменение величины суммарной дозы облучения от воздействия всех радионуклидов, перечисленных выше, а также и от других более короткоживущих продуктов деления. ![]() Рис. 2. Ежегодные эффективные дозы облучения жителей Северного полушария Земли образовавшимися в результате проведения ядерных испытаний в атмосфере отдельными радионуклидами и их суммой Из приведенных на рис. 1 данных видно, что после 1951 г. величины доз облучения начали увеличиваться, а в 1963-1964 гг. достигли максимальных значений. В этот период величина эффективной дозы облучения от воздействия всех радионуклидов составляла примерно 0,15 м3в в год при годовой коллективной дозе 30 млн. чел. - 3в. Такая величина коллективной дозы облучения, рассчитанная с учетом проведения всех ЯИ в атмосфере, соответствует примерно 4 годам дополнительного облучения населения земного шара за счет природного радиационного фона (ПРФ). По данным станций наблюдения Госкомгидромета СССР, после испытаний на СИПНЗ в 1961-1962 гг. уровни радиоактивных выпадений в северных регионах нашей страны возросли на 2-3 порядка по сравнению с 1960 г. Так, максимальная плотность радиоактивных выпадений (по суммарной бета-активности) в Амдерме в 1962 г. в 11 тыс. раз превышала сегодняшние фоновые значения. Наиболее чувствительной к этим выпадениям оказалась природа арктического пояса. В конце 50-х годов уровни радиоактивности в пищевой цепочке "лишайник - северный олень - человек" на территории севернее 60-й параллели более чем в 10 раз превышали фоновые показатели. По официальным данным, онкологическая смертность среди оленеводов почти в два раза больше, чем в среднем по бывшему СССР, причем рак пищевода у коренных северян встречается в 15-20 раз чаще. За 45 лет ядерных испытаний на Земле происходило интенсивное накопление радионуклидов. В биосферу было выброшено 12,5 т продуктов деления (при ЯВ урановой бомбы над Хиросимой выделилось 1,1 кг продуктов деления, а в результате катастрофы на Чернобыльской АЭС – от 8 до 15 т). Взрывы изменили равновесное содержание в атмосфере углерода – 14 (с периодом полураспада 5730 лет) на 2,6 % (по другим данным ЯВ привели к увеличению 14С в биосфере примерно на 60%), а радиоактивного изотопа трития (с периодом полураспада 12,3 года) – почти в 100 раз. Радиоактивное излучение на поверхности Земли достигло к 1963 г. 2% сверх естественного фона [31]. Определяющий вклад в величину возможной эффективной эквивалентной дозы облучения населения сегодня вносят четыре радионуклида: 14С, 137Cs, 95Zr и 90Sr. Вклад 95Zr уже практически реализован. Значительная часть вклада в дозу облучения 137Cs и 90Sr будет реализована к концу этого столетия, при этом величины таких доз будут незначительны. Только 14С, имеющий большой период полураспада, будет продолжать действовать как источник облучения в далеком будущем [43]. Действительно, этот радионуклид к 2000 г. потерял лишь около 7% своей первоначальной активности. Однако надо иметь в виду, что суммарный выброс в атмосферу 14С в результате ЯИ составил всего 2,6 % от величины его естественного накопления в природе под действием космического излучения. Поэтому за время жизни одного поколения (70 лет) доза облучения от 14С "взрывного" происхождения составит не более 0,0065 м3в. Такая доза не может оказать какого-либо вредного влияния на здоровье человека (рис. 3). ![]() Рис. 3. Средние годовые дозы от глобально диспергированного 14С ядерных установок (доклад НКДАР ООН, 2000 г.) Продукты ЯВ, образовавшиеся во время ЯИ, распространились по всему Земному шару и обусловили увеличение ПРФ в период наиболее интенсивного проведения ЯИ в среднем на 10%, угрожая жизни людей и природе. Поэтому принятие московского Договора 1963 г. о запрещении испытаний ЯО в трех средах явилось величайшим шагом в деле уменьшения РЗ нашей планеты. 4. Характеристика состояния радиационной опасности в России Большую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов среди техногенных источников чрезвычайных ситуаций представляют ядерно и радиационно опасные объекты [7,21,31,32,44,45]. Печальный исторический факт – большинство крупномасштабных радиационных аварий случилось на территории бывшего СССР (табл. 5) [46,47]. Таблица 5. Выявленные эффекты от трех аварий со значительным выходом радиоактивности
* ХЛБ – хроническая лучевая болезнь, ККМ – красный костный мозг, ОЛБ – острая лучевая болезнь, ЩЖ – щитовидная железа По официальным данным в атомной промышленности произошло за 50 лет 23 случая неуправляемой самоподдерживающейся цепной реакции (СЦР), в которых пострадали люди, из них 12 случаев в промышленности и 11 случаев в научных исследованиях [8]. Данные ГНЦ «Институт биофизики» по количеству аварий и инцидентов за 50 лет существования атомной энергетики и промышленности (АЭП), а также использования ЯЭ в народном хозяйстве приведены в табл. 6. Таблица 6. Радиационные инциденты с пострадавшими в АЭП СССР – России за 50 лет (данные ГНЦ ИБФ на март 2001 г.)
* МЛП – местные локальные поражения ** исключая случаи с МЛП на предприятиях ПО "Маяк" в 1949-1956 гг., не включенные в регистр ГНЦ-ИБФ Аварии и инциденты на ядерно и радиационно опасных объектах Минатома России представлены в табл. 7 и 8 [9]. Таблица 7. Аварии и инциденты на ядерно- и радиационно опасных объектах Минатома России (1990–2001 гг.)
За последние годы количество аварий остается практически на одном уровне (табл. 8). В 2005 г. пострадавших, по данным отчетной документации, не отмечено. Таблица 8. Количество аварий и лиц, подвергшихся повышенному облучению в 1998–2002 гг.
Как и в предыдущие годы, причины аварий связаны в основном с нарушением правил работы с приборами и устройствами, содержащими источники ионизирующего излучения (ИИИ). По-прежнему отмечаются факты нарушения действующих норм и правил при использовании и хранении ИИИ. После распада СССР некогда целостная государственная система контроля за местонахождением и перемещением ИИИ оказалась отягощённой, к сожалению, целым рядом объективных обстоятельств, что породило невиданный всплеск нехарактерных ранее преступлений. Значительная часть радиационных инцидентов и аварий первой категории сегодня связаны с выявлением радиоактивных источников в ломе цветных и черных металлов. Сейчас на территории России имеются 213 ядерных установок различного назначения (в основном это исследовательские реакторы и атомные станции), а также 1467 пунктов хранения ядерных отходов в народном хозяйстве и 5194 различных радиационных источников. Старение этих объектов интенсифицирует их уязвимость под действием различных внешних и внутренних факторов. Заслуживают особого внимания промышленные и исследовательские ядерные установки (ИЯУ). Характерной особенностью этих установок является их размещение, как правило, непосредственно в жилых и производственных зонах крупных промышленных центров (Москва, Санкт-Петербург, Димитровград и др.). В частности, в г. Москве и Московской области в настоящее время эксплуатируются более 50-ти ИЯУ различного назначения [30]. Оборудование и технологические системы большинства ИЯУ морально и физически изношены; нормативно-технические документы обеспечения безопасности использования этих установок либо устарели, либо отсутствуют; продолжается утечка из состава эксплуатационного персонала высококвалифицированных кадров; нет достаточного финансирования для необходимой реконструкции установок. Анализ и оценка РЗ окружающей природной среды (ОПС) России вызывают серьезную тревогу [46-48]. Пространственная оценка масштабов РЗ в России непосредственно связана с реально существующими предприятиями, добывающими и перерабатывающими уран, объектами ядерного Военно-промышленного комплекса – ВПК (включая полигон на Новой Земле) и атомной энергетики, океанского атомного флота, системой пунктов захоронения радиоактивных отходов (ПЗРО), районами проведения подземных ядерных взрывов (ПЯВ) и существующими исследовательскими реакторами (рис. 4). ![]() Рис. 4. Объекты ядерной производственной инфраструктуры бывшего СССР [52, c.82] По состоянию на 01.01.2002 г. загрязненные радионуклидами территории (участки земель, водоёмы) общей площадью 481,4 км2 имеются на 25 предприятиях Росатома. Из них РЗ земли составляют 377 км2 (78,3%), а загрязненные водоёмы – 104,4 км2 (21,7%). В том числе загрязнены 63,6 км2 территории промплощадок, 197,9 км2 территорий СЗЗ и в ЗН – 219,9 км2. Распределение РЗ территорий по радионуклидному составу загрязнителей: подавляющая часть территорий загрязнена радонуклидами 137Cs, 90Sr и 60Co (97,31%). На территории России в народно-хозяйственных целях был проведен 81 ПЯВ. В некоторых районах их проведения (Ивановская область, Республика Саха – Якутия и др.) произошло локальное РЗ территорий, сооружений и оборудования. Особого внимания заслуживают территории, где загрязнение радионуклидами обусловлено ядерными катастрофами. РЗ территорий произошло главным образом в начальный период реализации оборонных программ, когда вопросы охраны ОПС и здоровья населения не являлись безусловным приоритетом. Наибольшую озабоченность у общественности вызывают комбинаты советского ядерного комплекса – производственное объединение (ПО) "Маяк" (г. Озерск), Горно-химический комбинат (ГХК, г. Железногорск) на р. Енисей и Сибирский химический комбинат (СХК, г. Северск) близ Томска, - в течение десятилетий производившие в больших количествах жидкие РАО, и Чернобыль. За ними по шкале обеспокоенности следуют Северо-Запад и Дальний Восток, а также Центральный регион России (ЦРР). Подавляющая часть РЗ территорий - 452 км2 (94%) приходится на долю ПО «Маяк». Их основная часть связана со сбросом РВ в р. Теча и аварией 1957 г. Кроме ПО «Маяк», наибольшее количество РЗ территорий имеют СХК – 10,4; Приаргунское производственное горно-химическое объединение – 8,5; ГХК – 4,7; Чепецкий механический завод – 1,35; Гидрометаллургический завод – 1,34 км2. Без учета ПО «Маяк» доля РЗ территорий, расположенных за пределами промплощадок предприятий, составляет около 13% всей площади загрязненных территорий. Набольшие площади в СЗЗ и ЗН имеют: Приаргунское производственное горно-химическое объединение – 1,318 км2; Гидрометаллургический завод – 0,545; ОАО «Машиностроительный завод» - 0,378; Новосибирский завод химконцентратов – 0,198; Кирово-Чепецкий химический комбинат – 0,587; ГХК – 0,415; НИИАР – 0,236 км2. Региональные особенности РЗ территории страны напрямую связаны с эксплуатацией ядерно-технологического и Военно-промышленного комплекса [31,32]. Центральный регион России [30]. В 11 субъектах ЦРР расположены предприятия ядерного комплекса России, 4 действующие АЭС, 2 строящиеся АЭС и 1 строящаяся АСТ. В округе расположены 25 радиационно и ядерно-опасных производств Росатома (постановление Правительства от 07.05.95 г. № 238). Крупнейшим центром атомной отрасли является г. Москва – один из самых насыщенных радиационно опасными объектами среди столиц мира: из 65 существующих в России особо опасных производств, использующих радиоактивные материалы, 38 расположены в Москве. В столице имеется 11 ИЯУ, более 2 тыс. организаций используют около 150 тыс. ИИИ. 14 предприятий Росатома относятся к радиационно и ядерно-опасным. Это РНЦ "Курчатовский институт", где с середины 40-х годов скопилось около 6 т ОЯТ и РАО суммарной активностью более 3 млн. Ки (около 100 тыс. Ки находится на территории института), а также Московский институт теоретической и экспериментальной физики (ИТЭФ), Всероссийский НИИ химической технологии, ГНЦ "ВНИИ неорганических материалов имени акад. А.А. Бочвара", ГНЦ "Физико-энергетический институт" (г. Обнинск), ОКБ "Гидропресс" (г. Подольск), ГНПП "Политех" (г. Электросталь), Завод полиметаллов, Машиностроительный завод "Молния" и др. Для 9 городов ЦРР предприятия атомной отрасли являются градообразующими. Южный и средний Урал [10]. Вследствие огромной концентрации объектов и предприятий ВПК в открытых водоёмах Челябинской области в период 1949-1956 гг. скопилось РАО от производства ЯО в сотни раз больше, чем было выброшено во время аварии на ЧАЭС. К лету 1951 г. в р. Теча было сброшено более 2,8 млн Ки радиоактивных веществ. По медицинским последствиям, то есть влиянию на здоровье населения, РЗ р. Теча – самый крупный радиационный инцидент за время функционирования в нашей стране атомной промышленности [7]. Более того, РЗ имеет тенденцию распространяться с грунтовыми и поверхностными водами. Велика вероятность поражения этими отходами территорий, на которых проживают около 10 млн. человек. Уральский регион перенасыщен ядерно-опасными объектами (включая Белоярскую АЭС с реактором БН-600), на которых происходили аварии, сопровождавшиеся переоблучением персонала и РЗ ОПС. В сентябре 1957 г. в Кыштыме взорвалась ёмкость, содержавшая высокорадиоактивные отходы (ВАО), загрязнив ОПС и образовав Восточно-Уральский радиоактивный след (ВУРС). За период 1967-1970 гг. на Урале произошло РЗ территории площадью около 1800 км2 посредством ветрового переноса радионуклидов с берегов оз. Карачай, которое использовалось для удаления ВАО (табл.9). Озеро Карачай к настоящему времени содержит около 120 тыс. Ки. Сохраняется превышение основных пределов доз техногенного облучения для жителей с. Муслюмово Челябинской области, проживающих в зоне наблюдения (ЗН) ПО "Маяк" [7]. К дополнению сказанному на территории региона проводились ЯВ в мирных целях и наземные испытания ЯО на Тоцком полигоне в 1954 г. в военных целях. Таблица 9. Характеристика радиационного воздействия на реке Теча и ВУРСе
В настоящее время на ПО «Маяк» ведутся работы по засыпке оз. Карачай, по повышению безопасности Теченского каскада водоемов, загрязненных территорий на промплощадке и в СЗЗ. Восточная Сибирь [11]. Район Красноярска характеризуется наличием РЗ русла и поймы реки Енисей (которое прослеживается на расстоянии до 1500 км вниз по течению от места сброса), возникшего в результате работы ГХК, в состав которого входили три реактора (один из них действует и в настоящее время) для производства оружейного плутония и радиохимический завод для выделения плутония. На ПО «Маяк» и ГХК отмечается превышение установленных нормативов сброса в выпусках сточных вод в р. Теча по 90Sr и р. Енисей по 24Na. Около комбината находится крупнейшее поземное геологическое хранилище ЖРО. Активность отходов, захороненных в подземные горизонты, – около 700 млн. Ки. Население в пойме р. Енисей питается продуктами местного производства (рыба, молоко, мясо, овощи). В рыбе, обитающей в зоне влияния сбросов ГХК, обнаруживаются техногенные радионуклиды, как на расстоянии 700 км от места сброса ниже по течению, так и выше, в районе г. Красноярска. Главная потенциальная угроза здоровью населения региона создается РЗ донных отложений и почвы островов плутонием – 239, имеющим период полураспада свыше 24 тыс. лет. Актуальность оценки радиационной обстановки в регионе возрастает в связи с перспективой достройки мощного завода РТ-2 для переработки облученного ядерного топлива (ОЯТ) энергетических реакторов типа ВВЭР-1000. Сегодня в действующем хранилище завода РТ-2, рассчитанном на прием 6 тыс. т, находится свыше 2 тыс. т ОЯТ, которое продолжает поступать с действующих АЭС России, Украины и стран, эксплуатирующих ядерные реакторы отечественного производства [35]. Западная Сибирь [12, 43] СХК – крупнейший среди предприятий ЯТЦ комплекс по производству плутония, урана и трансурановых элементов. На СХК осуществляется закачка ЖРО в подземные пласты – коллекторы. Суммарная активность хранящихся там РАО оценивается в 4•108 Ки, а в открытых хранилищах – 1,25•108 Ки. 6 апреля 1993 г. произошел радиационный инцидент на СХК (Томск-7), приведший к выбросу РВ в результате нарушения технологического режима работ на одном из участков производства. Общественность страны и население территорий, находящихся в зоне влияния СХК, были подробно информированы об этом инциденте. Проводимые мероприятия и эффективность защитных мер представлены в табл. 10. Таблица 10. Авария на СХК, 1993 г. Эффективность защитных мер 1993 г.
От испытаний на Семипалатинском полигоне (Казахстан, 1949-1963 гг.) пострадали Алтайский край и Республика Горный Алтай. В зоне РЗ расположены 27 районов и 5 городов с населением 1,6 млн. человек (60,9% населения Алтайского края), которые периодически подвергались облучению в ходе испытаний ЯО. В целях обеспечения социальной защиты граждан РФ, подвергшихся радиационному воздействию вследствие ЯИ на Семипалатинском полигоне, Президент России издал Указ от 20.12.1993 г., регламентирующий компенсационные меры и льготы [12]. От испытаний ЯО пострадали не только Казахстан и Алтайский край, но ещё и Тыва, Хакасия, Красноярский край, Новосибирская, Кемеровская, Иркутская, Читинская и Томская области [11, 12, 36]. Продолжение статьи… |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|